fulltext.study @t Gmail

Self-assembled elastin-like polypeptide particles

Paper ID Volume ID Publish Year Pages File Format Full-Text
1969 96 2008 9 PDF Available
Title
Self-assembled elastin-like polypeptide particles
Abstract

In this work, the self-assembly of a recombinant elastin-based block copolymer containing both hydrophobic and cross-linking domains from the human elastin protein was investigated. The particle formation and dynamic behavior were characterized using inverted microscopy and dynamic light scattering. The morphology and stability were evaluated using scanning and transmission electron microscopy. Above a critical temperature the molecules self-assembled into a bimodal distribution of nano- and micron-sized particles. The larger particles increased in size through coalescence. Micron-sized particle formation appeared largely reversible, although a self-assembly/disassembly hysteresis was observed. At high polyethylene glycol (PEG) concentrations particle coalescence and settling were reduced, particle stability seemed enhanced and PEG coated the particles. Particle stabilization was also achieved through covalent cross-linking using glutaraldehyde. This study laid the foundation for optimization of particle size and stability through modification of the solvent system and has shown that this family of elastin-based polypeptides holds potential for use as particulate drug carriers.

Keywords
Elastin; Block copolymer; Self-assembly; PEG; Microparticles; Nanoparticles
First Page Preview
Self-assembled elastin-like polypeptide particles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 1, January 2008, Pages 49–57
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us