fulltext.study @t Gmail

Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
1984 96 2008 10 PDF Available
Title
Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering
Abstract

One major weakness that all cardiovascular replacements have in common is the lack of endothelial cell (EC) growth and post-implant remodeling of the device. The emerging field of tissue engineering focuses on the in vitro generation of functional organ replacements using living endothelial cells and other vascular cells for which nondegradable or biodegradable scaffold base materials are used. In this paper, it is demonstrated that some of the cardiovascular device materials in clinical use lack the ability to promote endothelial cell growth in vitro. We previously established a biomimetic matrix composition which supports the growth of human umbilical vein endothelial cells (HUVECs) while maintaining normal physiology in vitro. Here the effectiveness of the same coating to preserve the normal antithrombotic phenotype of endothelial cells grown on biomaterials was evaluated. The up/down-regulation of two prothrombotic and two antithrombotic molecules by HUVECs grown on bare material surfaces were compared with that on composite-coated materials. The suitability of this approach for blood-contacting applications was investigated by in vitro blood compatibility studies as recommended in ISO10993 part 4, by putting an EC-seeded surface in contact with human whole blood. It is demonstrated that EC-seeded bare material surfaces are prothrombotic, whereas surfaces pre-coated with biomimetic molecules facilitated maintenance of the normal EC phenotype and reduced the risk of platelet adhesion and activation of blood coagulation. The results presented here suggest that matrix composed of biomimetic adhesive proteins and growth factors is suitable for cardiovascular tissue engineering to improve biological function, irrespective of the material chosen to meet the mechanical properties of the device.

Keywords
Biomimetic matrix; Tissue engineering; Endothelial cells; Blood compatibility; Biomaterials
First Page Preview
Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 1, January 2008, Pages 182–191
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us