fulltext.study @t Gmail

Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation

Paper ID Volume ID Publish Year Pages File Format Full-Text
1999 97 2010 7 PDF Available
Title
Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation
Abstract

Our objectives were to correlate the mineral density (MD) and elastic modulus (E) of natural white spot lesions (WSLs) and compare them with analytical and numerical models. Five natural WSLs from four extracted sound premolar teeth were scanned at a voxel size of 7.6 μm using a desktop X-ray microtomography (XRMT) system. Five hydroxyapatite phantoms with densities ranging from 1.52 to 3.14 g cm−3 were used as calibration standards for each scan. MD throughout the WSLs was quantified using an MD calibration equation derived from hydroxyapatite phantoms. Subsequently, teeth were cross-sectioned and the E modulus was measured systematically across the WSLs at intervals of 25 and 50 μm using nanoindentation. The MD and E modulus of WSLs correlated well. The relationship may be expressed as E = E0 exp−bP (R2 = 0.952) with E0 the elastic modulus of the fully dense material, P the porosity and b a constant. The results for sound enamel were compared with Spears model. The limitation of Spears model to the WSLs is discussed and an alternative model developed by Rice for porous materials is proposed. Clinical implications of this work for quantifying de-/remineralization of teeth are pointed out. We conclude that XRMT can be utilized to extrapolate the E modulus of WSLs. This provides a basis for non-destructive, longitudinal analysis of WSLs in de-/remineralization studies of enamel.

Keywords
Enamel; Microcomputed tomography; Nanoindentation; Elastic modulus; Demineralization
First Page Preview
Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 12, December 2010, Pages 4553–4559
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us