fulltext.study @t Gmail

Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures

Paper ID Volume ID Publish Year Pages File Format Full-Text
20101 43157 2016 6 PDF Available
Title
Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures
Abstract

Embryoid body (EB) culture has been widely used for in vitro differentiation of embryonic stem (ES) cells. Micropatterning of cultures is a promising technique for regulating EB development, because it allows for controlling the EB size and the distance between neighboring EBs. In this study, we examined the relationship of EB separation distance to their growth and differentiation using a micropatterned chip. The basic chip design consisted of 91 gelatin spots (300 μm in diameter) in a hexagonal arrangement on a glass substrate that served as the cell adhesion area; the region without gelatin spots was modified with polyethylene glycol to create the non-adhesion area. Two similar chips were fabricated with distances between gelatin spots of 500 and 1500 μm. Mouse ES cells adhered on the gelatin spots and then proliferated to form EBs. When the EB–EB distance was at 1500 μm, their size and the expression of developmental gene markers were almost the same for all EBs on the chip. This indicated that interference between neighboring EBs was avoided. In contrast, when the EB–EB distance was at 500 μm, the size of EBs located in the inside region of the chip was smaller than that in the outside region. Additionally, in the inside region, hepatic differentiation of EB cells was increased over cardiac and vascular differentiation. These results indicate that the distance between EBs is an important factor in the regulation of their growth and differentiation.

Keywords
Mouse embryonic stem cells; Embryoid body; Micropatterned culture; Cell proliferation; Cell differentiation
First Page Preview
Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 121, Issue 1, January 2016, Pages 105–110
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us