fulltext.study @t Gmail

Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel

Paper ID Volume ID Publish Year Pages File Format Full-Text
2012 97 2010 9 PDF Available
Title
Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel
Abstract

There is a consistent need for a suitable natural biomaterial to function as an arterial prosthesis in achieving arterial regeneration. Natural grafts are generally obtained by decellularization of native blood vessels, but batch to batch variations may occur and the nature/content of remaining contaminants is generally unknown. In this study we fabricated a molecularly defined natural arterial graft from scratch resembling the native three layered architecture from the fibrillar extracellular matrix components collagen and elastin. Using casting, moulding, freezing and lyophilization techniques, a triple layered construct was prepared consisting of an inner layer of elastin fibres, a middle (porous) film layer of collagen fibrils and an outer scaffold layer of collagen fibrils. The construct was carbodiimide cross-linked and heparinized. Characterization included biochemical/biophysical analyses, scanning electron microscopy, micro-computed tomography, (immuno)histology and haemocompatibility. Burst pressures were up to 400 mm Hg and largely conferred by the intermediate porous collagen film layer. The highly purified type I collagen fibrils and elastin fibres used did not evoke platelet aggregation in vitro. Suturability of the graft in end to side anastomosis was successful and considered adequate for in vivo application.

Keywords
Type I collagen; Elastin; Heparin; Acellular; Vascular graft; Molecular tissue engineering
First Page Preview
Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 12, December 2010, Pages 4666–4674
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us