fulltext.study @t Gmail

Improved transgene integration into the Chinese hamster ovary cell genome using the Cre-loxP system

Paper ID Volume ID Publish Year Pages File Format Full-Text
20275 43166 2015 8 PDF Available
Title
Improved transgene integration into the Chinese hamster ovary cell genome using the Cre-loxP system
Abstract

Genetic engineering of cellular genomes has provided useful tools for biomedical and pharmaceutical studies such as the generation of transgenic animals and producer cells of biopharmaceutical proteins. Gene integration using site-specific recombinases enables precise transgene insertion into predetermined genomic sites if the target site sequence is introduced into a specific chromosomal locus. We previously developed an accumulative site-specific gene integration system (AGIS) using Cre and mutated loxPs. The system enabled the repeated integration of multiple transgenes into a predetermined locus of a genome. In this study, we explored applicable mutated loxP pairs for AGIS to improve the integration efficiency. The integration efficiencies of 52 mutated loxP sequences, including novel sequences, were measured using an in vitro evaluation system. Among mutated loxP pairs that exhibited a high integration efficiency, the applicability of the selected pairs to AGIS was confirmed for transgene integration into the Chinese hamster ovary cell genome. The newly found mutated loxP pairs should be useful for Cre-mediated integration of transgenes and AGIS.

Keywords
Accumulative site-specific gene integration; Chinese hamster ovary cells; Cre/loxP; Recombinase-mediated cassette exchange; Mutated loxP
First Page Preview
Improved transgene integration into the Chinese hamster ovary cell genome using the Cre-loxP system
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 120, Issue 1, July 2015, Pages 99–106
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering