fulltext.study @t Gmail

Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening

Paper ID Volume ID Publish Year Pages File Format Full-Text
20499 43177 2014 8 PDF Available
Title
Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening
Abstract

Nowadays, high-throughput screening is essential for determining the best microbial strains and fermentation conditions. Although microtiter plates allow higher throughput in screening than shake flasks, they do not guarantee sufficient oxygen supply if operated at unsuitable conditions. This is especially the case in viscous fermentations, potentially leading to poor liquid movement and surface growth. Therefore, in this study, two aims were pursued. First, an industrial Trichoderma reesei shake flask protocol is improved with respect to oxygen supply and production. Second, this improved shake flask protocol is scaled down into microtiter plate under consideration of similar oxygen supply. For this purpose, the respiration activity monitoring system (RAMOS) was applied. An approach based on a sulfite system was introduced to ensure equal maximum oxygen transfer capacities (OTRmax) in microtiter plates and shake flasks. OTRmax-values of 250 mL shake flasks and 24-well microtiter plates were determined in a wide range of operating conditions. These sulfite datasets were used to identify operating conditions leading to the same oxygen supply for T. reesei in shake flasks and 24-well microtiter plates. For 24-well microtiter plates, the shake flask OTRmax of 20 mmol/L/h of an industrial protocol was obtained under the following optimal operating conditions: 1 mL filling volume per well, 200 rpm shaking frequency and 50 mm shaking diameter. With these conditions almost identical oxygen transfer rates and product concentrations were measured in both scales. The proposed approach is a fast and accurate means to scale-down established screening procedures into microtiter plates to achieve high-throughput.

Keywords
Maximum oxygen transfer capacity; Trichoderma reesei; Scaling; Scale-down; Shake flask; Sulfite method; 24-well microtiter plate
First Page Preview
Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 118, Issue 6, December 2014, Pages 702–709
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us