fulltext.study @t Gmail

Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture

Paper ID Volume ID Publish Year Pages File Format Full-Text
20711 43187 2013 8 PDF Available
Title
Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture
Abstract

Tissue engineering requires growth factors, cells and a scaffold to permit effective tissue regeneration. This study focused on the development of a scaffold for liver tissue engineering, because the liver is a central organ for metabolism. We aimed to develop a scaffold to promote expression of liver-specific functions of hepatocytes, with a focus on immobilizing growth factors onto an organ-specific matrix for liver tissue regeneration. Solubilized extracellular matrix from decellularized liver (L-ECM) was obtained following Triton X-100 treatment and consisted of protein and polysaccharide. L-ECM was found to immobilize hepatocyte growth factor (HGF), even in the presence of albumin, with an efficiency of 75%. Additionally, the immobilized HGF on L-ECM film was stably remained in culture condition for 5 days. Immobilized HGF promoted hepatocyte migration, thus indicating that L-ECM-immobilized HGF maintained its native biological activity. Furthermore, L-ECM stimulated the expression of liver-specific functions, including albumin secretion, urea synthesis and ethoxyresorufin-O-deethylase activity, in primary rat hepatocytes cultured in growth factor-free medium. In summary, L-ECM has the potential to become an effective material in the field of regenerative medicine.

Keywords
Extracellular matrix; Decellularized liver; Growth factor; Hepatocyte; Immobilization
First Page Preview
Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 116, Issue 6, December 2013, Pages 746–753
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us