fulltext.study @t Gmail

Relationship between Escherichia coli AppA phytase's thermostability and salt bridges

Paper ID Volume ID Publish Year Pages File Format Full-Text
20721 43188 2013 5 PDF Available
Title
Relationship between Escherichia coli AppA phytase's thermostability and salt bridges
Abstract

In order to study on the relationship between Escherichia coli AppA phytase's thermostability and salt bridges, and indicate an effective technical route of which factor to think about and where to modify at AppA for enhancing its thermostability, a salt bridge subtraction mutant E31Q and a salt bridge addition mutant Q307D were constructed by site-directed mutagenesis. The residual activities of the wild-type AppA phytase, E31Q and Q307D were 31.42%, 17.46%, and 40.57%, respectively, after being heated at 80°C for 10 min. The salt bridge subtraction mutant E31Q showed 13.96% thermostability decreasement, and the salt bridge addition mutant Q307D showed 9.15% thermostability enhancement than the wild-type both without the pH and temperature optimum changed. It proved salt bridges play a key role in E. coli AppA phytase's thermostability and the α/β-domain of AppA may be sensitive to heat. Salt bridges and the α/β-domain of AppA should have high priority to think about to enhance AppA's thermostability for commercial application. Besides, molecular dynamics simulation was used for salt bridges analysis.

Keywords
Thermostability; Salt bridge; Molecular dynamics simulation; Escherichia coli AppA phytase; Site-directed mutagenesis
First Page Preview
Relationship between Escherichia coli AppA phytase's thermostability and salt bridges
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 115, Issue 6, June 2013, Pages 623–627
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us