fulltext.study @t Gmail

Development of a strain for efficient degradation of polychlorinated biphenyls by patchwork assembly of degradation pathways

Paper ID Volume ID Publish Year Pages File Format Full-Text
20894 43196 2011 6 PDF Available
Title
Development of a strain for efficient degradation of polychlorinated biphenyls by patchwork assembly of degradation pathways
Abstract

Rhodococcus jostii RHA1 accumulates chlorobenzoates (CBA) during the degradation of polychlorinated biphenyls (PCBs). CBA degradation is considered one of the rate-limiting steps in the complete degradation of PCBs. To reduce the accumulation of CBAs, the upper pathway enzyme genes for PCB degradation of RHA1 were introduced into a CBA-degrading bacterium, Burkholderia sp. NK8. The resulting recombinant strain exhibited no biphenyl 2,3-dioxygenase (BphA) activity encoded by bphAaAbAcAd genes, which encode the large and small subunits of the terminal oxygenase component and the ferredoxin and reductase subunits responsible for electron transfer from NADH to the large subunit. The remaining enzyme genes involved in the transformation of biphenyl to benzoate, bphB2C1D1, which encode dehydrogenase, ring-cleavage dioxygenase and hydrolase, conferred activities to NK8. To obtain the BphA activity of RHA1 in NK8, sets of BphA genes were constructed by combining the bphAaAbAcAd genes of RHA1 and bphA3A4 of Pseudomonas pseudoalcaligenes KF707, encoding the ferredoxin and reductase subunits. Hybrid derivatives of BphA containing the KF707 bphA3 conferred BphA activity to NK8, and a derivative containing the RHA1 bphAaAb and KF707 bphA3A4 genes exhibited the highest BphA activity. A plasmid containing the RHA1 bphAaAb and KF707 bphA3A4 genes plus the RHA1 bphB2C1D1 genes was constructed and introduced into NK8. The resulting recombinant strain efficiently degraded 2-, 3- and 4-chlorobiphenyls with an apparent reduction in CBA accumulation in comparison to the recombinant mutant strain, which had an insertion in the cbeA gene to inactivate CBA dioxygenase.

Keywords
Polychlorinated biphenyl (PCB); Chlorobenzoate; Rhodococcus; Bukholderia; Ring-hydroxylating dioxygenase; Biphenyl 2,3-dioxygenase
First Page Preview
Development of a strain for efficient degradation of polychlorinated biphenyls by patchwork assembly of degradation pathways
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 111, Issue 4, April 2011, Pages 437–442
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us