fulltext.study @t Gmail

Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging

Paper ID Volume ID Publish Year Pages File Format Full-Text
2090 100 2008 8 PDF Available
Title
Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging
Abstract

Non-invasively monitoring the extent of cell growth, scaffold degradation and tissue development will greatly help tissue engineers to monitor in vivo regenerate tissue function and scaffold degradation. Currently available methods for tissue and scaffold degradation analysis, such as histology and direct mechanical measurements, are not suitable for continuous monitoring of the same sample in vivo as they destroy cells, tissue matrix and scaffolds. In addition, different samples are prepared and measured at varying times, but high tissue growth deviation between specimens and the need for monitoring tissue growth and scaffold degradation at different times requires large sample numbers for statistical analysis. Ultrasound elasticity imaging (UEI) based on phase-sensitive speckle tracking can characterize the internal structural, compositional and functional change of biomaterial scaffolds and engineered tissues at high resolution. In this study, UEI resolution was 250 μm (axial) by 500 μm (lateral) using a commercial ultrasound transducer centered at 5 MHz. This method allows characterization of both globally and locally altered scaffold and engineered tissue elastic properties. Preliminary in vitro and in vivo results with poly(1,8-octanediol-co-citrate) scaffolds support the feasibility of UEI as a non-invasive quantitative monitoring tool for scaffold degradation and engineered tissue formation. This novel non-invasive monitoring tool will provide direct, time-dependent feedback on scaffold degradation and tissue ingrowth for tissue engineers to improve the design process.

Keywords
Non-invasive imaging; Strain imaging; Tissue scaffold degradation; Tissue scaffold mechanical property; Ultrasound elasticity imaging
First Page Preview
Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 4, July 2008, Pages 783–790
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering