fulltext.study @t Gmail

Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
2108 100 2008 7 PDF Available
Title
Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces ☆
Abstract

A new hyper-branched surface in which three species of architectures were constructed as stem chain, branched stem and twig chain-grafted branched chain of poly(poly(ethylene glycol)methacrylate) (poly(PEGMA)) by photo-polymerization using dithiocarbamyl group (DC) as iniferter was prepared and characterized. For these surfaces, radical copolymerization of styrene and an iniferter-activated chain that was previously synthesized was performed for using as base materials for surface coating. On a DC-activated surface, hyper-branched poly(PEGMA) was introduced by photo-polymerization and dithiocarbamylation. All modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Our results demonstrated that a highly hyper-branched graft architecture of poly(PEGMA) can be constructed on PU surface by photo-polymerization using dithiocarbamyl group as iniferter, in which first, second and third generation gave stem chain, branched chain and twig chain of poly(PEGMA), respectively. Our hyper-branched surfaces could be regulated by photo-irradiation time and might be controlled by feed amounts or other reaction conditions. This highly dense architecture of PEG chain with hydrophilicity and chain mobility, grafted on surface, is expected to be effectively utilized in bio-implantable substrates or micro- or nano-patterned surfaces for immobilization of bioactive molecules in biomedical fields.

Keywords
Hyper-branched surface; Photo-polymerization; Poly(poly(ethylene glycol)methacrylate) (poly(PEGMA)); Iniferter; Dithiocarbamylation
First Page Preview
Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 4, July 2008, Pages 960–966
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us