fulltext.study @t Gmail

Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold

Paper ID Volume ID Publish Year Pages File Format Full-Text
21086 43205 2011 7 PDF Available
Title
Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold
Abstract

Human adipose-derived mesenchymal stem cells (AD-MSCs) attracted much interest as a promising alternative to autologous chondrocytes and bone marrow-derived mesenchymal stem cells for cartilage regeneration. Developing a suitable culture technique to direct AD-MSCs into the chondrogenic lineage could be a crucial prerequisite for the cartilage defect repair application of AD-MSCs. Herein, we prepared the PEGDG-crosslinked porous three-dimensional (3D) hyaluronic acid (HA) scaffold and evaluated for its feasibility to induce proliferation and chondrogenic differentiation of the AD-MSCs. In addition, the effect of bone-morphogenetic protein-2 (BMP-2) and platelet-derived growth factor (PDGF) on chondrogenic differentiation was further investigated. Proliferation and chondrogenic differentiation were evaluated by cell morphology, DNA contents, s-GAG contents, and level of mRNA expression of relevant marker genes. When cultured with reference chondrogenic medium (RCM; serum-free DMEM-HG supplemented with 10 ng/mL of transforming growth factor-β1 (TGF-β1), 50 nM ascorbate, 100 nM dexamethasone, and 5 μg/mL of ITS), better proliferation and chondrogenic differentiation of AD-MSCs were obtained in the 3D HA scaffold culture as compared to the micromass culture, a standard 3D culture system. Moreover, the level of chondrogenic differentiation of AD-MSCs in the HA scaffold–RCM culture system was further increased by BMP-2, and decreased by PDGF. These results suggested that the HA scaffold with RCM was a promising chondrogenic culture system of AD-MSCs, and that BMP-2 could potentially serve as a chondrogenic supplement for AD-MSCs. However, PDGF was determined to be an inappropriate supplement based on its inhibition of the chondrogenic differentiation of AD-MSCs.

Keywords
AD-MSCs, adipose-derived mesenchymal stem cells; BCM, RCM supplemented with 50 ng/mL of BMP-2; BM-MSCs, bone marrow-derived mesenchymal stem cells; BMP-2, bone-morphogenetic protein-2; DMEM-HG, Dulbecco's modified Eagle's medium-high glucose; EM, expansio
First Page Preview
Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 112, Issue 4, October 2011, Pages 402–408
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us