fulltext.study @t Gmail

Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process

Paper ID Volume ID Publish Year Pages File Format Full-Text
2159 101 2010 9 PDF Available
Title
Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process
Abstract

Biocompatible three-dimensional (3-D) porous scaffolds are of great interest for tissue engineering applications. We here present a novel combined freeze-drying/cross-linking process to prepare porous polysaccharide-based scaffolds. This process does not require an organic solvent or porogen agent. We unexpectedly found that cross-linking of biomacromolecules such as pullulan and dextran with sodium trimetaphosphate could be performed during freeze-drying. We have demonstrated that the freeze-drying pressure modulates the degree of porosity. High freeze-drying pressure scaffolds presented pores with a mean diameter of 55 ± 4 μm and a porosity of 33 ± 12%, whereas low freeze-drying pressure scaffolds contained larger pores with a mean diameter of 243 ± 14 μm and a porosity of 68 ± 3%. Porous scaffolds of the desired shape could be easily obtained and were stable in culture medium for weeks. In vitro viable mesenchymal stem cells were found associated with porous scaffolds in higher proportions than with non-porous scaffolds. Moreover, cells penetrated deeper into scaffolds with larger pores. This novel combined freeze-drying/cross-linking processing of polysaccharides enabled the fabrication of biocompatible scaffolds with controlled porosity and architectures suitable for 3-D in vitro culture and biomedical applications.

Keywords
Porous scaffold; Hydrogel; Polysaccharide; Mesenchymal stem cells
First Page Preview
Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 9, September 2010, Pages 3640–3648
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us