fulltext.study @t Gmail

Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA

Paper ID Volume ID Publish Year Pages File Format Full-Text
2183 102 2006 10 PDF Available
Title
Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA
Abstract

The purpose of this study is to examine the hydrolytic degradation of electron beam irradiated ring-opening polymerized (ROP) poly(l-lactide) (PLLA-ir) and non-irradiated melt polycondensation polymerized poly(l-lactic acid) (PLLA-pc). It was observed that irradiation increases the hydrolytic degradation rate constant for ROP PLLA. This was due to a more hydrophilic PLLA-ir, as a result of irradiation. The degradation rate constants (k) of PLLA-ir samples were also found to be similar, regardless of the radiation dose, and an empirically formulated equation relating hydrolytic degradation time span to radiation dose was derived. The k value for PLLA-pc was observed to be lower than that for PLLA-ir, though the latter had a higher molecular weight. This was due to the difference in degradation mechanism, in which PLLA-ir undergoes end group scission, through a backbiting mechanism, during hydrolysis and thus a faster hydrolysis rate. Electron beam irradiation, though accelerates the degradation of PLLA, has been shown to be useful in accurately controlling the hydrolytic time span of PLLA. This method of controlling the hydrolytic degradation time was by far an easier task than through melt polycondensation polymerization. This would allow PLLA to be used for drug delivery purposes or as a temporary implant that requires a moderate time span (3–6 months).

Keywords
PLLA; Melt polycondensation polymerization; Electron beam radiation; Hydrolytic degradation; Chain end scission
First Page Preview
Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 2, Issue 3, May 2006, Pages 287–296
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us