fulltext.study @t Gmail

Culture of mouse embryonic stem cells on photoimmobilized polymers

Paper ID Volume ID Publish Year Pages File Format Full-Text
22022 43249 2006 7 PDF Available
Title
Culture of mouse embryonic stem cells on photoimmobilized polymers
Abstract

Mouse embryonic stem (ES) cells were cultured on four types of polymer with different surface properties. The polymers were poly(acrylic acid), polyallylamine, gelatin, and poly(2-methacryloyloxyethyl phosphorylcholine-co-methacrylic acid) (PMAc50), and were coupled with azidophenyl groups and photoimmobilized on conventional polystyrene cell-culture dishes. Mouse ES cells were cultured on the immobilized polymer surfaces, and cell morphology, cell growth, staining for alkaline phosphatase, activation of the transcription factor stat3, and expression of the octamer-binding protein 3/4 (Oct3/4) transcription factor and the zinc finger-containing transcription factor (GATA4) were observed. Morphology and growth rate were significantly affected by the polymer surface properties. The ES cells attached to gelatin or polyallylamine surfaces; however, colonies formed on the former but not the latter. In addition, significant enhancement of growth was observed on the gelatin surface. In contrast, ES cells aggregated to form an embryoid body on the photoimmobilized poly(acrylic acid) surface and the PMAc50 surface, although cell growth was reduced. Significant enhancement of aggregation of ES cells on the PMAc50 surface was observed in morphology and gene expression analyses.

Keywords
embryonic stem (ES) cell; photo-immobilization; cell culture
First Page Preview
Culture of mouse embryonic stem cells on photoimmobilized polymers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 102, Issue 4, October 2006, Pages 304–310
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us