fulltext.study @t Gmail

Effects of temperature and hydraulic retention time on anaerobic digestion of food waste

Paper ID Volume ID Publish Year Pages File Format Full-Text
22026 43249 2006 5 PDF Available
Title
Effects of temperature and hydraulic retention time on anaerobic digestion of food waste
Abstract

A modified three-stage methane fermentation system was developed to digest food waste efficiently. This system consisted of three stages: semianaerobic hydrolysis, anaerobic acidogenesis and strictly anaerobic methanogenesis. In this study, we examined the effects of temperature and hydraulic retention time (HRT) on the methanogenesis. Operation temperature was adjusted from 30°C to 55°C, and the HRTs ranged from 8 to 12 d. The rate of soluble chemical oxygen demand (sCOD) removal correlated with digestion time according to the first-order kinetic model developed by Grau et al. [Water Res., 9, 637–642 (1975)]. With liquor food waste, thermophilic digesters showed a higher rate of sCOD removal than mesophilic digesters. The rates of biogas and methane production by thermophilic digesters were higher than those by mesophilic digesters regardless of HRT. Although maximum biogas production occurred when an HRT of 10 d was used, the methane yield was the highest in the reactor when an HRT of 12 d was used (223 l CH4/kg sCODdegraded). However, digestion stability decreased when an HRT of 8 d was used. The concentration of NH3-N generated in this experiment did not inhibit anaerobic digestion.

Keywords
anaerobic digestion; methane; temperature effect; organic waste; bioenergy
First Page Preview
Effects of temperature and hydraulic retention time on anaerobic digestion of food waste
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 102, Issue 4, October 2006, Pages 328–332
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us