fulltext.study @t Gmail

Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase a gene

Paper ID Volume ID Publish Year Pages File Format Full-Text
22137 43256 2006 7 PDF Available
Title
Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase a gene
Abstract

The presence of cyanobacterial bloom in water supply reservoirs can cause potential health hazards. In this study, we aimed at the quantification of microcystin-producing cyanobacteria based on the microcystin synthetase A (mcyA) gene using real-time PCR. To perform a highly sensitive real-time PCR assay, the novel primer MSR-2R was designed and a coprecipitation DNA extraction method was used in this study. Cyanobacterial cells could be collected efficiently by coprecipitation with other bacteria suspended in solution even in the case of low concentrations of cyanobacteria. The detection limit of the method was found to be 8.8 cells per reaction. When cyanobacterial growth was monitored in pure culture, the cell concentration determined by real-time PCR positively correlated with the cell concentration determined from direct microscopic count. Furthermore, we could detect and quantify the mcyA gene in lake water samples using real-time PCR. It was concluded that the quantification of the mcyA gene based on real-time PCR is a powerful tool for the rapid quantification of microcystin-producing cyanobacteria in environmental samples.

Keywords
cyanobacteria; mcyA gene; microcystin; Microcystis sp.; real-time PCR
First Page Preview
Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase a gene
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 102, Issue 2, August 2006, Pages 90–96
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us