fulltext.study @t Gmail

Effective selection system for experimental evolution of random polypeptides towards DNA-binding protein

Paper ID Volume ID Publish Year Pages File Format Full-Text
22331 43269 2007 6 PDF Available
Title
Effective selection system for experimental evolution of random polypeptides towards DNA-binding protein
Abstract

An experimental evolution with selection based on binding affinity to DNA was carried out on a library of phage-displayed random polypeptides of about 140 amino acid residues. First, we constructed a system to artificially evolve phage-displayed random polypeptides toward binding to a target DNA containing a restriction enzyme site, in which random polypeptides capable of binding the DNA were recovered as complexes with the target DNA by digestion with the restriction enzyme. The experimental evolution cycle, including the above selection system and random mutagenesis for generating the next mutant library, was repeated until the fourth generation. The ability to bind to the DNA was enhanced per generation. In the fourth generation, convergence of the selected clones to a dominant sequence was observed. These results indicate that the newly constructed selection system is effective for exploring the evolvability of random polypeptides towards DNA-binding proteins.

Keywords
artificial evolution; artificial protein; DNA binding; phage display
First Page Preview
Effective selection system for experimental evolution of random polypeptides towards DNA-binding protein
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Bioscience and Bioengineering - Volume 103, Issue 2, February 2007, Pages 155–160
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us