fulltext.study @t Gmail

Interactions of the streptococcal C5a peptidase with human fibronectin

Paper ID Volume ID Publish Year Pages File Format Full-Text
2308 108 2008 10 PDF Available
Title
Interactions of the streptococcal C5a peptidase with human fibronectin
Abstract

Group B Streptococci (GBS) is a leading cause of sepsis and meningitis in neonates and immunocompromised adults in western countries. GBS do not bind to fibronectin (Fn) in solution, but will bind to Fn adsorbed onto a solid surface. The reason for the specificity of this binding is unknown. Single molecule force spectroscopy was used to test the hypothesis that GBS, through streptococcal C5a peptidase (ScpB) molecules present on the surface of the bacteria, binds to a motif created by the juxtaposition of multiple adjacent Fn molecules. Atomic force microscopy (AFM) topographical images of adsorbed Fn deposited from various Fn coating concentrations were used to determine the Fn surface concentration. ScpB was tethered to an AFM tip with all surface modifications characterized by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. At the lowest Fn coverages the probability of observing a ScpB–Fn binding event increased linearly with Fn surface coverage. As an Fn monolayer was reached the probability of a ScpB–Fn binding event occurring increased markedly (∼50 fold), with a concomitant increase in the rupture force from 17 pN to 33 pN. These results are consistent with the hypothesis that ScpB binds to a motif created by the juxtaposition of multiple Fn molecules.

Keywords
Single molecule force spectroscopy; Fibronectin; Streptococcal C5a peptidase; Poly(ethylene glycol)
First Page Preview
Interactions of the streptococcal C5a peptidase with human fibronectin
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 3, May 2008, Pages 504–513
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us