fulltext.study @t Gmail

Virus-free transient protein production in Sf9 cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
23251 43424 2014 10 PDF Available
Title
Virus-free transient protein production in Sf9 cells
Abstract

A method for virus-free transient gene expression from suspension-adapted Sf9 insect cells was developed with the gene of interest being expressed from a plasmid carrying the homologous region 5 enhancer (hr5) and the immediate early 1 (ie1) promoter from Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Under the optimal conditions described in the study, cells were transfected at a density of 30 × 106 cells/mL with 0.9 μg DNA and 1.35 μg of linear 25 kD polyethylenimine (PEI) per million cells. Following transfection, the culture was diluted to 4 × 106 cells/mL for the protein production phase. The volumetric yield of tumor necrosis factor receptor (ectodomain) fused to an Fc domain (TNFR-Fc) was about 100 μg/mL for cultures at volumes up to 300 mL. As expected, the molecular weight of the dimeric TNFR-Fc produced from Sf9 cells was about 6 kDa less than that produced from a recombinant Chinese hamster ovary (CHO) cell line due to differences in glycosylation between the two hosts. Transient transfection provides an alternative to the baculovirus expression vector system (BEVS) for the rapid production of recombinant proteins from Sf9 cells.

Keywords
Sf9 cells; Polyethylenimine; Transient gene expression; Recombinant protein; Suspension culture
First Page Preview
Virus-free transient protein production in Sf9 cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 171, 10 February 2014, Pages 61–70
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us