fulltext.study @t Gmail

Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures

Paper ID Volume ID Publish Year Pages File Format Full-Text
2329 108 2008 10 PDF Available
Title
Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures
Abstract

Functionally graded, hard and wear-resistant Co–Cr–Mo alloy was coated on Ti–6Al–4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS™). The addition of the Co–Cr–Mo alloy onto the surface of Ti–6Al–4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co–Cr–Mo transition from Ti–6Al–4V was difficult to produce due to cracking. However, using optimized LENS™ processing parameters, crack-free coatings containing up to 86% Co–Cr–Mo were deposited on Ti–6Al–4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co–Cr–Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti–6Al–4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co–Cr–Mo alloy. Producing near net shape components with graded compositions using LENS™ could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.

Keywords
Functionally graded materials; Laser processing; Laser engineered net shaping (LENS); Biocompatibility; Osteoblast
First Page Preview
Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 4, Issue 3, May 2008, Pages 697–706
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us