fulltext.study @t Gmail

Genetically programmed superparamagnetic behavior of mammalian cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
23625 43459 2012 9 PDF Available
Title
Genetically programmed superparamagnetic behavior of mammalian cells
Abstract

Although magnetic fields and paramagnetic inorganic materials were abundant on planet earth during the entire evolution of living species the interaction of organisms with these physical forces remains a little-understood phenomenon. Interestingly, rather than being genetically encoded, organisms seem to accumulate and take advantage of inorganic nanoparticles to sense or react to magnetic fields. Using a synthetic biology-inspired approach we have genetically programmed mammalian cells to show superparamagnetic behavior. The combination of ectopic production of the human ferritin heavy chain 1 (hFTH1), engineering the cells for expression of an iron importer, the divalent metal ion transferase 1 (DMT1) and the design of an iron-loading culture medium to maximize cellular iron uptake enabled efficient iron mineralization in intracellular ferritin particles and conferred superparamagnetic behavior to the entire cell. When captured by a magnetic field the superparamagnetic cells reached attraction velocities of up to 30 μm/s and could be efficiently separated from complex cell mixtures using standard magnetic cell separation equipment. Technology that enables magnetic separation of genetically programmed superparamagnetic cells in the absence of inorganic particles could foster novel opportunities in diagnostics and cell-based therapies.

► First genetically engineered superparamagnetic mammalian cells. ► First magnetic cell separation using superparamagnetically engineered cells. ► Unprecedented iron loading of mammalian cells using ectopic expression of the DMT1 iron-import protein. ► Elaboration of special iron-loading cell culture media to allow for maximum ferritin-based intracellular iron storage.

Keywords
Biogenic magnetization; Biomagnetism; Cell separation; Metabolic engineering; Superparamagnetism; Synthetic biology
First Page Preview
Genetically programmed superparamagnetic behavior of mammalian cells
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 162, Issues 2–3, 31 December 2012, Pages 237–245
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering