fulltext.study @t Gmail

Microbial production of virus-like particle vaccine protein at gram-per-litre levels

Paper ID Volume ID Publish Year Pages File Format Full-Text
24006 43489 2010 8 PDF Available
Title
Microbial production of virus-like particle vaccine protein at gram-per-litre levels
Abstract

This study demonstrates the feasibility of large-scale production of murine polyomavirus VP1 protein in recombinant Escherichia coli as pentamers which are able to subsequently self-assemble in vitro into virus-like particles (VLPs). High-cell-density pH-stat fed-batch cultivation was employed to produce glutathione-S-transferase (GST)-VP1 fusion protein in soluble form. The expression of recombinant VP1 was induced with IPTG at different cell optical densities (OD at 600 nm of 20, 60 or 100). GST-VP1 production was highest when the culture was induced at a cell density of OD 60, with volumetric yield reaching 4.38 g L−1 in 31 h, which we believe is the highest volumetric productivity for viral capsid protein reported to date. The induction cell density is shown to have a significant effect on the overall volumetric yield of recombinant VP1 and on final cell density, but not on VLP quality. VP1 yield was enhanced 15-fold by scaling-up from shake flask to pH-stat fed-batch cultivation in a bioreactor. Although numerous studies have expressed structural viral protein in E. coli, we believe this is the first report of translation to bioreactors yielding gram-per-litre levels. This VLP production technology overcomes major drawbacks associated with eukaryotic cell-based vaccine production technologies, and propounds the scope for large-scale commercially viable E. coli based VLP production by significantly reducing vaccine production time and cost.

Keywords
Virus-like particles; VP1; Heterologous gene expression; Fed-batch cultivation; pH-stat; Escherichia coli
First Page Preview
Microbial production of virus-like particle vaccine protein at gram-per-litre levels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 150, Issue 2, 15 October 2010, Pages 224–231
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us