fulltext.study @t Gmail

Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p

Paper ID Volume ID Publish Year Pages File Format Full-Text
24197 43504 2010 7 PDF Available
Title
Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p
Abstract

Arsenic contamination of ground water affects the health of millions of people worldwide. Bioremediation has the potential to lower contaminant levels in cases where physical methods are either ineffective or cost prohibitive. The yeast Saccharomyces cerevisiae was engineered for enhanced arsenite accumulation by overexpression of transporters responsible for the influx of the contaminant. The transporter genes FPS1 and HXT7 were cloned under the control of the late-phase ADH2-promoter. This allowed for protein production at high biomass levels without the addition of inducer. Following the transfer of stationary phase cells to buffer, the engineered strains were capable of 3–4-fold greater arsenic uptake as compared to control cells. Further, at trace levels of the metalloid, the cells overexpressing the Fps1p transporter removed ca. 40% more arsenite from the extracellular medium than the controls. Arsenic uptake was also evaluated in cells overexpressing the transporters coupled with high-level production of cytosolic As sequestors (phytochelatins or bacterial ArsRp) to act as an intracellular sink. This led to an up to 4-fold increase in As accumulation in the resting cell culture as compared to native cells. The results demonstrate important steps needed to engineer a yeast biosorbent with enhanced accumulation capabilities for this metalloid.

Keywords
Arsenic; FPS1; HXT7; AtPCS; ArsR; Saccharomyces cerevisiae
First Page Preview
Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 150, Issue 1, 1 October 2010, Pages 101–107
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us