fulltext.study @t Gmail

Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: A pilot study

Paper ID Volume ID Publish Year Pages File Format Full-Text
24207 43504 2010 8 PDF Available
Title
Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: A pilot study
Abstract

Restoration of lymphatic drainage using lymph vessels or tissue grafting is becoming an efficient method for alleviating obstructive lymphedema. However, the lack of ideal lymphatic grafts is the key problem that limits the application of lymphatic transplantation, but now that may be resolved with tissue-engineered lymph vessels. In this study, the feasibility of reconstructing lymph vessels was explored using lymphatic endothelial cells (LECs) combined with polyglycolic acid (PGA) scaffolds. The highly purified human dermal LECs can be isolated from human dermis by immunomagnetic bead sorting and multiplied in culture. The viability and growth potential of subcultured LECs make it possible to obtain large amount of cells in vitro. Light and scanning electron microscopy (SEM) showed that the prefabricated PGA scaffolds, with three-dimensional structure, can support cell adhesion, growth and spreading. The constructs formed with LECs combined with PGA scaffolds were cultured in vitro for 10 days and then implanted subcutaneously into nude mice. Six weeks after implantation, the portions of implanted tubules were harvested. Gross and histological observation demonstrated that the tubular structure still remained in the experimental groups but not in the control groups. Immunohistochemical staining and RT-PCR assay of the implanted vessels revealed positive staining in experimental groups for the lymphatic specific markers Podoplanin, VEGFR-3 and LYVE-1. The results indicate that LECs can serve as seed cells and be successfully combined with PGA scaffolds, and the tissue-engineered tubular structure using implanted LECs–PGA compounds showed preliminary characteristics of lymph vessels. A gap between the nearly normal or functional lymph vessel still exists as we have only the endothelial cell-lined duct, but this study demonstrates that it is feasible to construct tissue-engineered lymph vessels using LECs combined with a biodegradable material.

Keywords
Polyglycolic acid; Lymphatic endothelial cells; Tissue engineering; Lymphedema
First Page Preview
Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: A pilot study
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 150, Issue 1, 1 October 2010, Pages 182–189
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us