fulltext.study @t Gmail

A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera

Paper ID Volume ID Publish Year Pages File Format Full-Text
24379 43510 2010 10 PDF Available
Title
A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera
Abstract

Hepatitis C virus (HCV) is a major disease agent affecting ∼3% of the world's population. Expression in plant chloroplasts enables low-cost production of the conserved HCV core protein used in diagnostic tests to combat virus spread in developing countries with high infection rates. The bactericidal activity of the 21 kDa precore protein hinders cloning the core gene in plastid expression cassettes, which are active in bacteria due to the similarities between bacterial and plastid promoters and ribosome binding sites. This was overcome by using a topology-dependent expression cassette containing tandem rrn and psbA plastid promoters, whose activity was shown to be dependent on temperature. The viral core gene and a codon-optimised gene encoding a C-terminal truncated 16 kDa core polypeptide were expressed in tobacco chloroplasts. The codon-optimised gene increased monocistronic core mRNA levels by at least 2-fold and core polypeptides by over 5-fold, relative to the native viral gene. Expression of the 16 kDa core polypeptide was stable in leaves of different ages. Anti-core antibodies in HCV-infected human sera were detected by the 16 kDa core polypeptide in total leaf protein fractionated on Western blots providing a first step towards developing a chloroplast-based HCV diagnostic method.

Keywords
aa, amino acid; cds, coding sequenceChloroplast transformation; DNA topology and gene expression; Hepatitis; HCV; Toxic protein
First Page Preview
A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 145, Issue 4, 15 February 2010, Pages 377–386
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us