fulltext.study @t Gmail

Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway

Paper ID Volume ID Publish Year Pages File Format Full-Text
24397 43512 2010 6 PDF Available
Title
Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway
Abstract

Polyhydroxyalkanoates are biodegradable biocompatible polymers naturally produced by various bacteria and archaea. Biotechnological production in transgenic plants has already been demonstrated with efficient polyhydroxybutyrate production requiring targeting of the enzymes to the chloroplasts. Three enzymes are required to establish the polyhydroxybutyrate biosynthesis pathway in non-naturally producing microorganisms or plants. To facilitate production of biopolyesters in plants, a gene encoding a translational fusion of the polyhydroxybutyrate biosynthesis enzymes PhaA (β-ketothiolase), PhaB (acetoacetyl-CoA reductase) and PhaC (PHA synthase) was constructed. Escherichia coli harboring a plasmid encoding this fusion protein (PhaA–PhaB–PhaC) under control of the lac promoter accumulated polyhydroxybutyrate contributing to 0.4% (w/w) of cellular dry weight. Insertion of an extended linker between PhaA and PhaB increased polyhydroxybutyrate accumulation to 3.9% (w/w) of cellular dry weight. Introduction of a second plasmid encoding PhaA and PhaB restored polyhydroxybutyrate accumulation to wildtype levels of about 35% (w/w) of cellular dry weight suggesting that the functions of PhaA and/or PhaB were limiting factors. Deletion of PhaA in trans led to significantly reduced polyhydroxybutyrate production suggesting that the PhaA activity in the fusion protein is reduced. This study showed that a single-chain translational fusion protein comprising the three enzymes essential for polyhydroxybutyrate synthesis can be engineered which will strongly facilitate the establishment of recombinant polyhydroxybutyrate production organisms particularly requiring targeting to sub-cellular compartments such as the chloroplasts in plants.

Keywords
Biopolyester; Polyhydroxyalkanoate; Fusion protein; Biopolymer
First Page Preview
Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 147, Issue 1, 3 May 2010, Pages 31–36
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us