fulltext.study @t Gmail

Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives

Paper ID Volume ID Publish Year Pages File Format Full-Text
2448 112 2010 9 PDF Available
Title
Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives
Abstract

The initial structure, setting and degradation processes of a poly(lactide-co-propylene glycol-co-lactide) dimethacrylate adhesive filled with 50, 60 or 70 wt.% reactive calcium phosphates (monocalcium phosphate monohydrate (MCPM)/β-tricalcium phosphate (β-TCP)) have been assessed using nuclear magnetic resonance, Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction and gravimetric studies. Filler incorporation reduced the rapid light-activated monomer polymerization rates slightly, but not the final levels. Upon immersion in water for 24 h, the set composite mass and volume increased due to water sorption. This promoted initial soluble MCPM loss from the composite surfaces, but also its reaction and monetite precipitation within the specimen bulk. After 48 h, composite gravimetric and chemical studies were consistent with surface erosion of polymer with reacted/remaining filler. The filled formulations exhibited more rapid early water sorption and subsequent surface erosion than the unfilled polymer. Calcium and phosphate release profiles and solution pH measurements confirmed early loss of surface MCPM with protons from polymer degradation products. At later times, the slower release of monetite/β-TCP buffered composite storage solutions at ∼5 instead of 3.2 for the unfilled polymer. Incorporation of filler increased both the early and later time material modulus. At intermediate times this effect was lost, presumably as a result of enhanced water sorption. The early modulus values obtained fell within the range reported for cancellous bone. Despite surface degradation, initial human mesenchymal cell attachment to both composites and polymer could be comparable with a non-degrading positive Thermanox® control. These studies indicate that the filled formulations may be good candidates for bone repair. Release of calcium and phosphate ions provides components essential for such repair.

Keywords
Bone cement; FTIR; Raman; NMR; Biocompatibility
First Page Preview
Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 7, July 2010, Pages 2695–2703
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us