fulltext.study @t Gmail

Attachment and growth of human embryonic stem cells on microcarriers

Paper ID Volume ID Publish Year Pages File Format Full-Text
24956 43548 2008 9 PDF Available
Title
Attachment and growth of human embryonic stem cells on microcarriers
Abstract

The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE™-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.

Keywords
Embryonic stem cells; Microcarriers; Pluripotency; Scale-up; Clinical
First Page Preview
Attachment and growth of human embryonic stem cells on microcarriers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 138, Issues 1–2, 6 November 2008, Pages 24–32
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us