fulltext.study @t Gmail

Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration

Paper ID Volume ID Publish Year Pages File Format Full-Text
2498 114 2010 10 PDF Available
Title
Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration
Abstract

Inherent brittleness and slow degradation are the major drawbacks for the use of calcium phosphate cements (CPCs). To address these issues, biodegradable ultrafine fibers were incorporated into the CPC in this study. Four types of fibers made of poly(ε-caprolactone) (PCL) (PCL12: 1.1 μm, PCL15: 1.4 μm, PCL18: 1.9 μm) and poly(l-lactic acid) (PLLA4: 1.4 μm) were prepared by electrospinning using a special water pool technique, then mixed with the CPC at fiber weight fractions of 1%, 3%, 5% and 7%. After incubation of the composites in simulated body fluid for 7 days, they were characterized by a gravimetric measurement for porosity evaluation, a three-point bending test for mechanical properties, microcomputer topography and scanning electron microscopy for morphological observation. The results indicated that the incorporation of ultrafine fibers increases the fracture resistance and porosity of CPCs. The toughness of the composites increased with the fiber fraction but was not affected by the fiber diameter. It was found that the incorporated fibers formed a channel-like porous structure in the CPCs. After degradation of the fibers, the created space and high porosity of the composite cement provides inter-connective channels for bone tissue in growth and facilitates cement resorption. Therefore, we concluded that this electrospun fiber-CPC composite may be beneficial to be used as bone fillers.

Keywords
Calcium phosphate cement; Electrospinning; Composite; Aligned fibers; Porosity
First Page Preview
Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 4, April 2010, Pages 1238–1247
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us