fulltext.study @t Gmail

Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: A proteome analysis

Paper ID Volume ID Publish Year Pages File Format Full-Text
25022 43552 2007 12 PDF Available
Title
Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: A proteome analysis
Abstract

The transformation of extremely high concentrations of ionic mercury (up to 500 mg L−1) was investigated in a chemostat for two mercury-resistant Pseudomonas putida strains, the sediment isolate Spi3 carrying a regulated mercury resistance (mer) operon, and the genetically engineered strain KT2442∷mer73 expressing the mer operon constitutively. Both strains reduced Hg(II) with an efficiency of 99.9% even at the maximum load, but the concentration of particle bound mercury in the chemostat increased strongly. A proteome analysis using two-dimensional gel electrophoresis and mass spectrometry (2-DE/MS) showed constant expression of the MerA and MerB proteins in KT2442∷mer73 as expected, while in Spi3 expression of both proteins was strongly dependent on the Hg(II) concentration. The total cellular proteome of the two strains showed very little changes at high Hg(II) load. However, certain cellular responses of the two strains were identified, especially in membrane-related transport proteins. In Spi3, an up to 45-fold strong induction of a cation efflux transporter was observed, accompanied by a drastic downregulation (106-fold) of an outer membrane porin. In such a way, the cell complemented the highly specific mercury resistance mechanism with a general detoxification response. No indication of a higher demand on energy metabolism could be found for both strains.

Keywords
Mercury; Biotransformation; Proteome analysis
First Page Preview
Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: A proteome analysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 132, Issue 4, 1 December 2007, Pages 469–480
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us