fulltext.study @t Gmail

Engineering cell metabolism for high-density cell culture via manipulation of sugar transport

Paper ID Volume ID Publish Year Pages File Format Full-Text
25159 43556 2007 9 PDF Available
Title
Engineering cell metabolism for high-density cell culture via manipulation of sugar transport
Abstract

Transporters mediate the influx of nutrients and excretion of metabolites in mammalian cells, playing a key role in the regulation of metabolism. They are natural targets for cell engineering to alter metabolic characteristics. The GLUT5 fructose transporter was stably expressed in a Chinese hamster ovary cell line, allowing clones to utilize fructose in place of glucose in culture medium. Compared to the ubiquitously expressed GLUT1 glucose transporter, the GLUT5 fructose transporter has a high Km value for its substrate. Fructose uptake by the GLUT5 transporter should supply sugar to cells at a more moderate rate, even in high fructose concentrations, avoiding the overflow of excess carbon to lactate. When cultured in fructose, selected GLUT5 expressing clones exhibited drastically reduced sugar consumption and lactate production rates. When those same clones were cultured in glucose, high sugar consumption and lactate production rates were observed. GLUT5 transcript expression levels and specific lactate production rates varied among the clones. Clones having a low expression level of the GLUT5 transporter were able to import fructose at more moderate rates in higher sugar concentrations. The reduced lactate production for these clones allowed a significant increase in the final cell concentration in fructose fed-batch processes.

Keywords
Fed-batch culture; Fructose; Sugar transport; GLUT5; Metabolic engineering; Mammalian cell culture
First Page Preview
Engineering cell metabolism for high-density cell culture via manipulation of sugar transport
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 131, Issue 2, 31 August 2007, Pages 168–176
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us