fulltext.study @t Gmail

Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption

Paper ID Volume ID Publish Year Pages File Format Full-Text
2531 114 2010 6 PDF Available
Title
Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption
Abstract

The biological performance of biomaterials is strongly influenced by their protein adsorption characteristics, which are related to the structures and properties of both the biomaterial and the protein. In the present study two groups of hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic powders were fabricated by different drying processes. The roles of the phase composition and microstructure of the powders in the adsorption of various model proteins were evaluated. The experimental results showed that BCP always had a higher ability to adsorb fibrinogen, insulin or type I collagen (Col-I) than HA. The microporosity and micropore size of the CaP particles also had a strong impact on their protein adsorption characteristics. HA and BCP particles with higher microporosities and/or more micropores >20 nm in diameter could adsorb more fibrinogen or insulin. However, amounts of adsorbed Col-I were largely unaffected by the microstructure of HA and BCP particles.

Keywords
Calcium phosphate ceramics; Phase composition; Microstructure; Protein adsorption
First Page Preview
Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 4, April 2010, Pages 1536–1541
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us