fulltext.study @t Gmail

Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends

Paper ID Volume ID Publish Year Pages File Format Full-Text
2537 114 2010 9 PDF Available
Title
Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends
Abstract

The aim of this study was to determine how the activities of human osteoblastic cells and osteoclasts respond to substrates of thermal-sprayed mechanical blends of hydroxyapatite and fluorapatite with a view of determining an optimal blend ratio for osseointegration. Human osteoblastic cells and osteoclasts were grown on titanium alloy discs coated with blends of hydroxyapatite and fluorapatite, with concentrations ranging from 0 to 100% fluorapatite. Human osteoblastic cells attached in greater numbers and proliferated at a greater rate on blends containing 40% fluorapatite. Human osteoblastic cells grown on blends containing 40% fluorapatite for 7 days also expressed the highest levels of mRNA for several proteins involved with regulating bone metabolism (osteoprotegerin and receptor activator nuclear factor kappa B ligand), and bone formation (osteopontin, osteonectin and bone sialoprotein 1). Osteoclasts resorbed the dentine but poorly resorbed the hydroxyapatite–fluorapatite blends, particularly at high levels of fluorapatite. This in vitro study demonstrates that thermal-sprayed hydroxyapatitecoatings containing 40% fluorapatite may promote optimal bone growth and improve osseointegration of implants.

Keywords
Osteoblast; Osteoclast; Hydroxyapatite; Fluoride; Fluorapatite
First Page Preview
Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 4, April 2010, Pages 1575–1583
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us