fulltext.study @t Gmail

Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces

Paper ID Volume ID Publish Year Pages File Format Full-Text
2547 114 2010 10 PDF Available
Title
Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces
Abstract

This study investigated the surface characteristics and biocompatibility of phosphate ion (P)-incorporated titanium (Ti) surfaces hydrothermally treated with various concentrations of phosphoric acid (H3PO4). The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, contact angle and surface energy measurement and inductively coupled plasma mass spectroscopy (ICP-MS). MC3T3-E1 cell attachment, spreading, proliferation and osteoblastic gene expression on different surfaces were evaluated. The degree of bony integration was biomechanically evaluated by removal torque testing after 4 weeks of healing in rabbit tibiae. The H3PO4 treatment produced micro-rough Ti surfaces with crystalline P-incorporated Ti oxide layers. High concentration H3PO4 treatment (1% and 2%) produced significantly higher hydrophilic surfaces compared with low H3PO4 treatment (0.5%) and untreated surfaces (P < 0.01). ICP-MS analysis showed P ions were released from P-incorporated surfaces. Significant increased cell attachment (P < 0.05) and notably higher mRNA expressions of Runx2, alkaline phosphatase, osteopontin and osteocalcin were observed in cells grown on P-incorporated surfaces compared with cells on untreated machined surfaces. P-incorporated surfaces showed significantly higher removal torque forces compared with untreated machined implants (P < 0.05). Ti surfaces treated with 2% H3PO4 showed increasing tendencies in osteoblastic gene expression and removal torque forces compared with those treated with lower H3PO4 concentrations or untreated surfaces. These results demonstrate that H3PO4 treatment may improve the biocompatibility of Ti implants by enhancing osteoblast attachment, differentiation and biomechanical anchorage.

Keywords
Titanium implant; Osteoblast differentiation; Phosphate chemistry; Surface wettability; Osseointegration
First Page Preview
Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 4, April 2010, Pages 1661–1670
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us