fulltext.study @t Gmail

Arsenic resistance and removal by marine and non-marine bacteria

Paper ID Volume ID Publish Year Pages File Format Full-Text
25483 43576 2007 9 PDF Available
Title
Arsenic resistance and removal by marine and non-marine bacteria
Abstract

Arsenic resistance and removal was evaluated in nine bacterial strains of marine and non-marine origins. Of the strains tested, Marinomonas communis exhibited the second-highest arsenic resistance with median effective concentration (EC50) value of 510 mg As l−1, and was capable of removing arsenic from culture medium amended with arsenate. Arsenic accumulation in cells amounted to 2290 μg As g−1 (dry weight) when incubated on medium containing 5 mg As l−1 of arsenate. More than half of the arsenic removed was related to metabolic activity: 45% of the arsenic was incorporated into the cytosol fraction and 10% was found in the lipid-bound fraction of the membrane, with the remaining arsenic considered to be adsorbed onto the cell surface. Potential arsenic resistance and removal were also examined in six marine and non-marine environmental water samples. Of the total bacterial colony counts, 28–100% of bacteria showed arsenic resistance. Some of the bacterial consortia, especially those from seawater enriched with arsenate, exhibited higher accumulated levels of arsenic than M. communis under the same condition. These results showed that arsenic resistant and/or accumulating bacteria are widespread in the aquatic environment, and that arsenic-accumulating bacteria such as M. communis are potential candidates for bioremediation of arsenic contaminated water.

Keywords
Arsenic; Removal; Accumulation; Resistance; Bioremediation; Bacteria
First Page Preview
Arsenic resistance and removal by marine and non-marine bacteria
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 127, Issue 3, 10 January 2007, Pages 434–442
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us