fulltext.study @t Gmail

Stresses in growing soft tissues

Paper ID Volume ID Publish Year Pages File Format Full-Text
2551 115 2006 12 PDF Available
Title
Stresses in growing soft tissues
Abstract

Biochemical processes of tissue growth lead to production of new proteins, cells, and other material particles at the microscopic level. At the macroscopic level, growth is marked by the change of the tissue shape and mass. In addition, the appearance of the new material particles is generally accompanied by deformation and, consequently, stresses in the surrounding material. Built upon a microscopic toy-tissue model mimicking the mechanical processes of mass supply, a simple phenomenological theory of tissue growth is used in the present work for explaining residual stresses in arteries and studying stresses around growing solid tumors/multicell spheroids. It is shown, in particular, that the uniform volumetric growth can lead to accumulation of residual stresses in arteries because of the material anisotropy. This can be a complementary source of residual stresses in arteries as compared to the stresses induced by non-uniform tissue growth. It is argued that the quantitative assessment of the residual stresses based on in vitro experiments may not be reliable because of the essential stress redistribution in the tissue samples under the cutting process. Concerning the problem of tumor growth, it is shown that the multicell spheroid or tumor evolution depends on elastic properties of surrounding tissues. In good qualitative agreement with the experimental in vitro observations on growing multicell spheroids, numerical simulations confirm that stiff hosting tissues can inhibit tumor growth.

Keywords
Growth; Soft tissue; Artery; Residual stresses; Tumor
First Page Preview
Stresses in growing soft tissues
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 2, Issue 5, September 2006, Pages 493–504
Authors
,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us