fulltext.study @t Gmail

Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures

Paper ID Volume ID Publish Year Pages File Format Full-Text
25521 43578 2007 11 PDF Available
Title
Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures
Abstract

The biodegradation kinetics of 2,4-dichlorophenol (2,4-DCP) by culture (Culture M) acclimated to mixture of 4-chlorophenol (4-CP) and 2,4-DCP and the culture (Culture 4) acclimated to 4-CP only were investigated in aerobic batch reactors. Also, pure strains isolated from mixed cultures were searched for their ability towards the biodegradation of 2,4-DCP. Culture 4 was able to completely degrade 2,4-DCP up to 80 mg/L within 30 h and removal efficiency dropped to 21% upon increasing initial concentration to 108.8 mg/L. When the Culture M was used, complete degradation of 2,4-DCP in the range of 12.5–104.4 mg/L was attained. A linear relationship between time required for complete degradation and initial 2,4-DCP concentrations was observed for both mixed cultures. It was observed that the Haldane equation can be used to predict specific degradation rate (SDR) (R2 > 0.99) as a function of initial 2,4-DCP concentrations and it adequately describes 2,4-DCP concentration profiles. Both of the mixed cultures settled well, which is important to maintain good removal efficiency for longer periods of time for real full-scale applications. Although the pure strains isolated from mixed cultures were found to have higher SDR of 2,4-DCP compared to mixed cultures, they did not settle well under quiescent conditions.

Keywords
2,4-Dichlorophenol; Biodegradation; Kinetics; Modeling; Haldane equation
First Page Preview
Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 127, Issue 4, 20 January 2007, Pages 716–726
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us