fulltext.study @t Gmail

A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors

Paper ID Volume ID Publish Year Pages File Format Full-Text
25640 43586 2006 9 PDF Available
Title
A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors
Abstract

Rotating wall vessel bioreactors (RWVs) constitute dynamic suspension culture venues for tissue engineering. Quantitative real-time assessment of the kinetics of cell–cell aggregation in RWVs can yield mechanistic information about the initial steps leading to the assembly of individual cells into tissue-like constructs. In our imaging system, fluorescently labeled cells suspended in a HARV-type RWV were irradiated by a laser-beam. Emission was recorded by a camera mounted at 90° to the excitation plane. Using macro lenses, the system identified ∼5 μm particles from a 5 cm working distance, distinguished aggregated 20 μm microspheres from larger (45 and 90 μm) microspheres, and plotted local trajectories of microspheres and cells. Sizes of PC12 cells assessed by our system matched conventional measurements. We validated the system's ability to follow HepG2 and PC12 aggregation in real time over 24 h of RWV culture. Taken together, our system provides the means to measure and analyze in real time the processes that lead to the 3D tissue-like assembly of diverse cell types into spheroids. Future studies include development of intelligent feedback algorithms, allowing automatic control over RWV rotational speed required to maintain aggregating cells and nascent tissue in continual free fall.

Keywords
RWV, rotating wall vessel bioreactor; HARV, high aspect ratio vessel; CFSE, carboxyfluorescein succinimidyl ester; CCD, charge coupled device; NTSC, National Television System Committee; FOV, field of viewRWV bioreactor; PC12 cells; HepG2 cells; Real-time
First Page Preview
A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Biotechnology - Volume 125, Issue 3, 18 September 2006, Pages 416–424
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering