fulltext.study @t Gmail

Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: Efficiency evaluation and elucidation degradation pathways

Paper ID Volume ID Publish Year Pages File Format Full-Text
25924 43920 2016 9 PDF Available
Title
Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: Efficiency evaluation and elucidation degradation pathways
Abstract

The heterogeneous photocatalytic degradation of carbamazepine (CBZ) was investigated in the presence of BiOCl/AgCl composite photocatalyst under simulated sunlight irradiation in water. BiOCl/AgCl composite showed higher photocatalytic activity than pure BiOCl for CBZ degradation. The photocatalytic mechanism analysis was based on byproducts identification by LC–MS-QTof and active species trapping or inhibiting experiments. The results revealed that the first step of the transformation mainly results in an electron transfer implying positive holes and to a lesser extent in hydroxyl radical’s involvement. The enhanced photocatalytic performance of BiOCl/AgCl was proved to be related to the suitable conduction and valence band interaction that extends optical response range but also improves the efficient separation of photoinduced electron-hole pairs. BiOCl/AgCl composite totally removed CBZ from natural surface water after 30 min irradiation, suggesting its potential application to wastewater treatments. Eight intermediate products were identified demonstrating that CBZ transformation occurs through two main routes from CBZ radical cation, hydroxylation of ring (aromatic or seven membered rings), followed by further oxidation, rearrangement ring and hydroxylation.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Carbamazepine; BiOCl/AgCl composite; Photocatalytic degradation; Reaction mechanism; Reactive species
First Page Preview
Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: Efficiency evaluation and elucidation degradation pathways
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 328, 1 September 2016, Pages 105–113
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us