fulltext.study @t Gmail

Prediction of absorption wavelengths using a combination of semi-empirical quantum mechanics simulations and quantitative structure–property relationship modeling approaches

Paper ID Volume ID Publish Year Pages File Format Full-Text
26410 43950 2015 6 PDF Available
Title
Prediction of absorption wavelengths using a combination of semi-empirical quantum mechanics simulations and quantitative structure–property relationship modeling approaches
Abstract

•Development of a combination of semi-empirical QM/QSPR approach for modelling optical properties and screening of chromophores and OLED molecules.•Prediction of first absorption wavelength of fluorophores and polycyclic aromatic molecules using semi empirical (MNDO, PM3 and OM3), QSPR and PM3/QSPR approaches.

Light emitting or absorbing molecules have a wide range of industrial applications. To enable in-silico screening of a number of such molecules one should be able to predict their emission or absorption spectra rapidly and accurately. In the present study, we developed a combination of semi-empirical quantum mechanical (QM) simulations and a quantitative structure–property relationship (QSPR) modeling approach to compute such properties rapidly with a fair degree of accuracy. We focused our work on the prediction of the first absorption wavelength of a set of 40 fluorophores or polycyclic aromatic molecules. We also compared the results obtained from our QM–QSPR combination approach with those from different stand-alone semi empirical QM calculations and pure QSPR modeling approach. We showed that there is an advantage in the QM–QSPR combination approach for predicting and screening optical properties quickly and with a great deal of accuracy.

Keywords
QSPR; Semi-empirical calculations; Polycyclic aromatic molecules; OLED; UV absorption prediction
First Page Preview
Prediction of absorption wavelengths using a combination of semi-empirical quantum mechanics simulations and quantitative structure–property relationship modeling approaches
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 299, 15 February 2015, Pages 183–188
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering