fulltext.study @t Gmail

Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation

Paper ID Volume ID Publish Year Pages File Format Full-Text
27405 44020 2013 10 PDF Available
Title
Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation
Abstract

•Isolated para-coumaric acid (pCA) and thiomethyl-para-coumaric acid (TMpCA) PYP models were studied.•UV illumination converts pCA from the trans to the cis conformer.•The pKa of the both conformers are resolved via pH titration coupled with electronic spectroscopy.•The cis conformer of pCA exhibits a 0.6 pH unit higher pKa than the trans form.•Quantum calculations show how geometry modifies charge distributions.•The higher pKa originates from Columbic interactions between phenolate and tail moieties.

The influence of chromophore structure on the protonation constant of the Photoactive Yellow Protein chromophore is explored with isolated para-coumaric acid (pCA) and thiomethyl-para-coumaric acid model chromophores in solution. pH titration coupled with visible absorption spectra of the trans and photogenerated cis conformer of isolated pCA demonstrates that the isomerization of the chromophore increases the pKa of the phenolate group by 0.6 units (to 10.1 ± 0.22). Formation of the pCA thioester reduces the pKa of the phenolic group by 0.3 units (from 9.5 ± 0.15 to 9.2 ± 0.16). Unfortunately, a macroscopic cis-TMpCA population was not achieved via photoexcitation. Both trends were explained with electronic structure calculations including a Natural Bond Orbital analysis that resolves that the pKa upshift for the cis configuration is attributed to increased Columbic repulsion between the coumaryl tail and the phenolate moieties. This structurally induced pKa upshift after isomerization is argued to aid in the protonation of the chromophore within the PYP protein environment and the subsequent propagation of the photocycle response and in vivo photo-activity.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Photoactive Yellow Protein; Photoisomerization; Quantum Modeling; Photoreceptors; Para-coumaric acid
First Page Preview
Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 270, 15 October 2013, Pages 43–52
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering