fulltext.study @t Gmail

Functional organogel based on a hydroxyl naphthanilide derivative and aggregation induced enhanced fluorescence emission

Paper ID Volume ID Publish Year Pages File Format Full-Text
27553 44030 2011 9 PDF Available
Title
Functional organogel based on a hydroxyl naphthanilide derivative and aggregation induced enhanced fluorescence emission
Abstract

A new class of low molecular weight organogelator (LMOG) of hydroxyl naphthanilide moiety was suitably designed and synthesized and it forms gels through noncovalent interactions in hydrocarbon solvents. Self-assembly structure, hydrogen bonding interaction, and photophysical properties of organogelator 3-hydroxy-naphthalene-2-carboxylic acid (2-heptylcarbamoyl-phenyl)-amide (2) have been investigated by field emission scanning electron microscope (FE-SEM), FT-IR, UV–vis absorption and photoluminescence combined with theoretical studies by hybrid density-functional theory (DFT) B3LYP and semi-empirical calculations AM1 with CI methods. It was found that gelation is completely thermoreversible, and it occurs due to the aggregation of the organogelator resulting in the formation of a fibrous network due to the π–π stacking interaction complemented by the presence of both inter- and intra-molecular hydrogen bonding. The self-assembled fibrillar networks in the gels were distinctly evidenced by SEM observations. FT-IR studies confirm that the common driving force for aggregation in the organogels and microsegregation in the mesophase is the occurrence of a tight intermolecular hydrogen bonded network that does not persist in diluted solution. Gelator 2 is very weakly fluorescent in solution, but its intensity is increased by almost 30–32 times in their respective gelled state depending on the nature of the gelling solvents. The aggregation induced emission enhancement is ascribed to the formation of J-aggregation and inhibition of intramolecular rotation in the gel state.

Keywords
Naphthanilide self-assembly; J-aggregation; Gelation-induced enhanced fluorescence emission (GIEFE); Excited-state intramolecular proton transfer (ESIPT); Twisted intramolecular charge transfer (TICT)
First Page Preview
Functional organogel based on a hydroxyl naphthanilide derivative and aggregation induced enhanced fluorescence emission
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 217, Issue 1, 1 January 2011, Pages 40–48
Authors
,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us