fulltext.study @t Gmail

Photoinduced protonation and mechanical motion in the cyclodextrin cavity: Synthesis, structure and spectral properties of 4-(2-napthyl)pyridine and their pseudorotaxane complexes

Paper ID Volume ID Publish Year Pages File Format Full-Text
27559 44030 2011 13 PDF Available
Title
Photoinduced protonation and mechanical motion in the cyclodextrin cavity: Synthesis, structure and spectral properties of 4-(2-napthyl)pyridine and their pseudorotaxane complexes
Abstract

The spontaneous and photoinduced protonation of 4-(2-naphthyl)pyridine (1) in solutions and in complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) were studied by absorption and fluorescence spectroscopy. The structure and stability of the complexes (log K = 1.5–2.3) of 1, its protonated form 2, and quaternized derivative, 1-methyl-4-(2-naphthyl)pyridinium perchlorate (3), with β-CD and HP-β-CD were studied by 1H NMR. It was shown that irrespective of the solution pH, compound 1 resides in the cyclodextrin cavity. HP-β-CD better binds the neutral form of 1 than β-CD, while naphthylpyridinium salts have approximately equal binding affinity to both cyclodextrins. The structures of salt 3 and pseudorotaxane complex 1@β-CD were determined by X-ray diffraction analysis. According to spectral data, pKa of 1 in water is 5.12, which promotes protonation of nitrogen both in the ground state and in the excited state. As a consequence, the fluorescence spectrum exhibits only the protonated form with a lifetime of 15 ns. The addition of HP-β-CD to a solution of 1 results in inclusion complex 1@HP-β-CD; simultaneously pKa of 1 decreases to 4.62 and non-protonated form fluorescence (NFF) of 1 with a lifetime of 1.25 ns appears. Thus, the residence of 1 in the HP-β-CD cavity hampers its protonation in the excited state. From comparison of the initial regions of fluorescence of 1 in solution and in the HP-β-CD complex after pulse excitation, a mechanism for appearance of short-lived NFF of 1 was proposed. Quantum chemical simulation of the protonation and complexation of 1 in the presence of water was performed. On the basis of results, reversible photoinduced mechanical motion of 1 in the HP-β-CD cavity was suggested.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Naphthylpyridine; β-Cyclodextrins; Inclusion complexes; Stability constants; Photoinduced protonation; Mechanical motion
First Page Preview
Photoinduced protonation and mechanical motion in the cyclodextrin cavity: Synthesis, structure and spectral properties of 4-(2-napthyl)pyridine and their pseudorotaxane complexes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 217, Issue 1, 1 January 2011, Pages 87–99
Authors
, , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us