fulltext.study @t Gmail

Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect

Paper ID Volume ID Publish Year Pages File Format Full-Text
277 22 2015 7 PDF Available
Title
Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect
Abstract

One of the most important issues in bone tissue engineering is the search for new materials and processing techniques to create novel scaffolds with 3-D porous structures. Although many properties such as biodegradability and porosity have been considered in designing bone scaffolds, very limited attention is paid to their capillary effect. In nature, capillary effect is ubiquitously used by plants and animals to constantly transport water and nutrients based on morphological and/or chemical gradient structures at multiple length-scales. In this work, we developed a modified freeze-casting technique to prepare ceramic scaffolds with gradient channel structures. The results show that our hydroxyapatite (HA) scaffolds have interconnected gradient channels that mimic the porous network of natural bone. More importantly, we demonstrate that such a scaffold has a very unique capillary behavior that promotes the self-seeding of cells when in contact with a cell solution due to spontaneous capillary flow generated from gradient channel structures. The strategy developed here provides a new avenue for designing “smart” scaffolds with complex porous structures and biological functions that mimic natural tissues.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (260 K)Download as PowerPoint slide

Keywords
Biomimetic; Scaffold; Bone; Cell seeding; Freeze-casting
First Page Preview
Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 20, 1 July 2015, Pages 113–119
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us