fulltext.study @t Gmail

Using silica films and powders modified with benzophenone to photoreduce silver nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
28558 44080 2006 9 PDF Available
Title
Using silica films and powders modified with benzophenone to photoreduce silver nanoparticles
Abstract

Porous silica (SiO2 films and powders), modified with benzophenone (BP), facilitates the formation of stable sliver nanoparticles by taking advantage of the solid supported photosensitizer. The silica serves as a carrier for the BP into an aqueous solution and its subsequent removal. Benzophenone, bound to a silica film, was able to reduce silver ions to generate nanoparticles in solution, while silica powder with bound BP generates silver nanoparticles that are attracted to the silica. Silver nanoparticles are also fabricated in porous silica films by incorporating silver ions into the films before casting and then irradiating the film in a solution containing BP. From pH studies, it is concluded that the ketyl-radicals and anion-radicals of BP and IPA both take part in the reduction of silver ions. These synthetic studies provide a new photochemical reduction method by immobilizing the reactant on a silica surface allowing generation of silver nanoparticles in solution attached to powders or inside a film for catalytic applications or increased conductivity of silica films.

Keywords
Mesoporous silica films; Silver nanoparticles (Ag NP); Benzophenone (BP); Ketyl-radicals; Photoreduction; Surface plasmon resonance (SPR)
First Page Preview
Using silica films and powders modified with benzophenone to photoreduce silver nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 181, Issues 2–3, 31 July 2006, Pages 385–393
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us