fulltext.study @t Gmail

Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays

Paper ID Volume ID Publish Year Pages File Format Full-Text
28776 44091 2006 8 PDF Available
Title
Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays
Abstract

We examine the visible light water-photoelectrolysis and photoelectrochemical properties of highly ordered titania nanotube arrays as a function of nanotube crystallinity, length (up to 6.4 μm), and pore size. Most noteworthy of our results, under visible light AM 1.5 illumination (100 mW/cm2) the titania nanotube array photoanodes (1 cm2 area), pore size 110 nm, wall thickness 20 nm, and length 6 μm, generate hydrogen by water photoelectrolysis at a rate of 175 μL/h, with a photoconversion efficiency of 0.6%. The energy–time normalized hydrogen evolution rate is 1.75 mL/h W. The oxygen bubbles evolving from the nanotube array photoanode do not remain on the sample, hence the output remains stable with time irrespective of the duration of hydrogen production.

Keywords
Hydrogen; Photolysis; Photoelectrolysis; Titania; Nanotube; Nanotube array
First Page Preview
Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 178, Issue 1, 20 February 2006, Pages 8–15
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us