fulltext.study @t Gmail

Rhodamine-conjugated acrylamide polymers exhibiting selective fluorescence enhancement at specific temperature ranges

Paper ID Volume ID Publish Year Pages File Format Full-Text
29019 44112 2008 6 PDF Available
Title
Rhodamine-conjugated acrylamide polymers exhibiting selective fluorescence enhancement at specific temperature ranges
Abstract

A simple copolymer, poly(NIPAM-co-RD), consisting of N-isopropylacrylamide (NIPAM) and rhodamine (RD) units, behaves as a fluorescent temperature sensor exhibiting selective fluorescence enhancement at a specific temperature range (25–40 °C) in water. This is driven by a heat-induced phase transition of the polymer from coil to globule. At low temperature, the polymer exists as a polar coil state and shows very weak fluorescence. At >25 °C, the polymer weakly aggregates and forms a less polar domain within the polymer, leading to fluorescence enhancement. However, at >33 °C, strong polymer aggregation leads to a formation of huge polymer particles, which suppresses the incident light absorption by the RD units and shows very weak fluorescence. In the present work, effects of polymer concentration and type of acrylamide unit in the polymer have been investigated. The increase in the polymer concentration in water leads to a formation of less polar domain even at low temperature and, hence, widens the detectable temperature range to lower temperature. Addition of N-n-propylacrylamide (NNPAM) or N-isopropylmethacrylamide (NIPMAM) component to the polymer, which has lower or higher phase transition temperature than that of NIPAM, enables the aggregation temperature of the polymer to shift. This then shifts the detectable temperature region to lower or higher temperature.

Keywords
Acrylamide polymers; Rhodamine; Fluorescence; Temperature sensor
First Page Preview
Rhodamine-conjugated acrylamide polymers exhibiting selective fluorescence enhancement at specific temperature ranges
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology A: Chemistry - Volume 200, Issues 2–3, 15 December 2008, Pages 432–437
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us