fulltext.study @t Gmail

Interaction of multitryptophan protein with drug: An insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking

Paper ID Volume ID Publish Year Pages File Format Full-Text
29511 44415 2012 12 PDF Available
Title
Interaction of multitryptophan protein with drug: An insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking
Abstract

The interaction of antibiotic Tetracycline hydrochloride (TC) with Alkaline Phosphatase (AP) from Escherichia coli, an important target enzyme in medicinal chemistry, having tryptophan (Trp) residues at 109, 220 and 268 has been studied using the steady state and time resolved emission of the protein and the enhanced emission of the bound drug. The association constant at 298 K (≈106 [M]−1) and the number of binding site (= 1) were estimated using the quenched Trp emission of AP, the enhanced emission and the anisotropy of the bound drug. The values of ΔH0 and ΔS0 are indicative of electrostatic and H-bonding interaction. The low temperature phosphorescence of free AP and the protein- drug complex and molecular docking comprehensively prove the specific involvement of partially exposed Trp 220 in the binding process without affecting Trp 109 and Trp 268. The Förster energy transfer (ET) efficiency and the rate constant from the Trp residue to TC = 0.51 and ≈108 s−1 respectively. Arg 199, Glu 219, Trp 220, Lys 223, Ala 231, Arg 232 and Tyr 234 residues are involved in the binding process. The motional restriction of TC imposed by nearby residues is reflected in the observed life time and the rotational correlation time of bound TC.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Involvement of a specific tryptophan of a biologically important protein with an important antibiotic. ► Different thermodynamic parameters of binding. ► Other photophysical studies including singlet state life time, anisotropy, phosphorescence. ► Docking studies.

Keywords
Lifetime; Triplet state; Anisotropy; Energy transfer; Accessible surface area; Binding mechanism
First Page Preview
Interaction of multitryptophan protein with drug: An insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 115, 3 October 2012, Pages 93–104
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us